

DPP - 1 (Electrostatics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/51

Video Solution on YouTube:-

Written Solution on Website:-

https://youtu.be/pHxYqEbylfw

Q 1. The minimum electrostatic force between two charged particles placed at a distance of 1 m is:
a) $2.3 \times 10^{-28} \mathrm{~N}$
b) $6.2 \times 10^{-34} \mathrm{~N}$
c) $1.02 \times 10^{-26} \mathrm{~N}$
d) $4.2 \times 10^{-27} \mathrm{~N}$

Q 2. If the distance between two point charges is increased by 3%, then calculate percentage decrease in force between them.
a) 3%
b) 5.7%
c) 9%
d) 1.5%

Q 3. In the given figure calculate the foree on charge Q placed at centre of circle of radius r .
(a) $\frac{1}{\sqrt{2} \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$
(b) $\frac{1}{2 \sqrt{2} \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$
(c) $\frac{1}{\sqrt{2} \pi \varepsilon_{0}} \frac{q Q}{r}$
(d) $\frac{1}{8 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$

Q 4. Two identically charged point spheres of mass 10 gm are suspended by thread of length L cm as shown in the figure. Calculate the charge on each sphere, If the distance between balls at equilibrium is 5 cm . [given: $(3)^{\frac{5}{4}} \approx 4$]

a) $12.5 \times 10^{-9} \mathrm{C}$
b) $12.5 \times 10^{-8} \mathrm{C}$
c) $12.5 \times 10^{-7} \mathrm{C}$
d) $12.5 \times 10^{-6} \mathrm{C}$

Q 5. The force between two charges when separated by a distance of 50 cm in air is 40 newtons. What will be the force between them if the distance becomes 25 cm ?

a) 160 N
b) 80 N
c) 20 N
d) 120 N

Q 6. A charge q is placed at the centre of the line joining two charges Q. The system of three charges will be in equilibrium if q is equal to
a) $-\frac{Q}{2}$
b) $-\frac{Q}{4}$
c) $+\frac{Q}{2}$
d) $+\frac{\stackrel{Q}{4}}{4}$

Q 7. A force F is acting between charges placed in vacuum. If the glass plate of dielectric constant $\mathrm{K}=6$ is now placed between them, the net force on charges now will be:
a) $6 F$
b) $\frac{F}{6}$
c) Zero
d) $\frac{F}{36}$

Q 8. Three charges each of 5×10^{-6} coloumbs are placed at vertex of an equilateral triangle of side 10 cm . The force exerted on the charge of $1 \mu C$ placed at centre of triangle in Newton will be:
a) 13.5
b) zero
c) 4.5
d) 6.75

Q 9. Three charges of equal magnitude are placed at three corners of square. If the force acting between q_{1} and q_{2} (placed alonga side) is F_{12} and that between q_{1} and q_{3} (placed along a diagonal) is F_{13} then the ratio of $\frac{F_{12}}{F_{13}}$ will be:
a) $\frac{1}{2}$
b) $\frac{1}{\sqrt{2}}$
c) 2
d) $\sqrt{2}$

Q 10. At all the four corners of a square a charge +q is placed. What should be the value of charge which is to be placed at the centre of square such that the entire system will be in equilibrium:
a) 5 q
b) -5 q
c) $-0,96 \mathrm{q}$
d) q

Answer Key

Q. 1 a	Q. 2 b	Q. 3 a	Q. 4 b	Q. 5 a
Q. 6 b	Q. 7 b	Q. 8 b	Q. 9 c	Q. 10 c

