

DPP – 1 (Electrostatics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/51

Video Solution on YouTube:-

https://youtu.be/pHxYqEbyIfw

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/40

Q 1. The minimum electrostatic force between two charged particles placed at a distance of 1 m is:
a) 2.3 × 10⁻²⁸ N
b) 6.2 × 10⁻³⁴ N

c) 1.02×10^{-26} N

- b) 6.2 $\times 10^{-34}$ N d) 4.2 $\times 10^{-27}$ N
- Q 2. If the distance between two point charges is increased by 3%, then calculate percentage decrease in force between them.
 a) 3%
 b) 5.7%
 c) 9%
 d) 1.5%
- Q 3. In the given figure calculate the force on charge Q placed at centre of circle of radius r.

Q 4. Two identically charged point spheres of mass 10 gm are suspended by thread of length L cm as shown in the figure. Calculate the charge on each sphere, If the distance between balls at equilibrium is 5 cm. [given: $(3)^{\frac{5}{4}} \approx 4$]

Q 5. The force between two charges when separated by a distance of 50 cm in air is 40 newtons. What will be the force between them if the distance becomes 25 cm?

a) 160 N	b) 80 <i>N</i>	c) 20 <i>N</i>	d) 120 <i>N</i>
u) 100 II	0)0011	\mathbf{c}	<i>a)</i> 1 0 1

Q 6. A charge q is placed at the centre of the line joining two charges Q. The system of three charges will be in equilibrium if q is equal to

a) $-\frac{Q}{2}$	b) $-\frac{Q}{4}$
c) $+\frac{Q}{2}$	d) $+\frac{Q}{4}$

Q 7. A force F is acting between charges placed in vacuum. If the glass plate of dielectric constant K = 6 is now placed between them, the net force on charges now will be:

a) 6F b) $\frac{F}{6}$ c) Zero d) $\frac{F}{36}$

Q 8. Three charges each of 5×10^{-6} coloumbs are placed at vertex of an equilateral triangle of side 10 cm. The force exerted on the charge of 1 μ C placed at centre of triangle in Newton will be: a) 13.5 b) zero c) 4.5 d) 6.75

Q 9. Three charges of equal magnitude are placed at three corners of square. If the force acting between q_1 and q_2 (placed along a side) is F_{12} and that between q_1 and q_3 (placed along a diagonal) is F_{13} then the ratio of $\frac{F_{12}}{F_{13}}$ will be:

c)

 $\sqrt{2}$

d)

d) q

a) $\frac{1}{2}$

Q 10. At all the four corners of a square a charge + q is placed. What should be the value of charge which is to be placed at the centre of square such that the entire system will be in equilibrium:

b) -5q c)-0.96g 5q a) **Answer Key**

Q.1	a	Q.2	b	Q.3	a	Q.4	b	Q.5 a
Q.6	b	Q.7	b	Q.8	b	Q.9	С	Q.10 c